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Abstract

This work provides a general formulation to solve vibration problems for continuous systems with damping effects,

including modal, transient, harmonic and spectrum response analyses. In modal analysis, the system eigenvalues and

corresponding eigenfunctions can be determined. The orthogonal relations of eigenfunctions are shown. For transient,

harmonic and spectrum analyses, the generic force/actuator functions and response/sensing operators are introduced,

respectively, and used to derive the system response. The time domain response is obtained for transient analysis, the

frequency response function is derived for harmonic analysis and statistical quantities of response variables due to random

excitation are determined in spectrum analysis. The solution for each type of analysis can be formulated and expressed in a

concise format in terms of generic force/actuator and response/sensor mode shape functions. In particular, one-

dimensional beam and two-dimensional plate vibration analyses are illustrated by following the developed generic

formulation. This work provides the complete analytical solutions of four types of vibration analyses for continuous

systems and can be applied to other engineering structures as well.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical or structural vibration problems are of great interest and importance in engineering design.
Many literatures and vibration textbooks [1–10] address the analytical and numerical approximation methods
to deal with both discrete (lumped parameter) systems and continuous (distributed parameter) systems,
respectively. Discrete systems include both single-degree-of-freedom (sdof) and multi-degree-of-freedom
(mdof) systems whose equations of motion are an ordinary differential equation (ODE) and a coupled set of
ODEs, respectively. Continuous systems deal with boundary-value problems, such as strings, bars, shafts,
beams, membranes and plates, whose equations of motion are partial differential equations (PDEs).

In studying vibration problems for engineering applications, four types of vibration analyses can be
categorized as follows:
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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1.
 Modal analysis or the so-called free vibration analysis is to determine the structural natural modes,
including natural frequencies and their corresponding mode shapes. Most engineering problems may only
require knowledge of structural modes to avoid resonance and for structural design. Many literatures deal
with analytical, semi-analytical or numerical solutions on various kinds of structures, such as beams [11–17]
and plates [18–25]. The orthogonal properties of structural mode shapes are also of interest for the
following types of vibration analyses.
2.
 Transient response analysis deals with the solution of a time domain transient response due to initial
excitation and external excitation. In analytical solutions, the modal domain approach is generally adopted
[26–28]. The original equation of motion for a continuous system expressed as a PDE in the physical
domain can be transformed into an infinite set of ODEs in the modal domain by the theoretical modal
analysis (TMA) procedure with the employment of orthogonal properties. The modal coordinate responses
can then be solved for different types of damping conditions. If the excitations are deterministic, the
analytical solution can be determined and is of interest.
3.
 Harmonic response analysis or steady-state response analysis [29–32] is used to solve system frequency
response functions (FRFs) that can be defined as the output response divided by the input excitation due to
harmonic or sinusoidal excitation. The steady-state response is of interest and the frequency-dependent
FRF is useful to evaluate the system response for sinusoidal excitation as well as periodic excitation. In
experimental modal analysis or modal testing, the FRFs can be measured and processed to determine
structural modal parameters [33].
4.
 Spectrum response analysis is mainly for systems subject to random excitations. Transient response analysis
in the time domain is generally infeasible, and frequency domain analysis techniques are employed. The
random inputs of external excitation are generally represented by power spectral density (PSD) functions,
and therefore the PSD functions of structural random response can then be obtained so as to determine the
system response in terms of statistical quantities [34–41].

There are rigorous literatures and textbooks dealing with the four types of vibration analyses for continuous
systems. Meirovitch [1,6] formulated a general approach for the differential eigenvalue problems so as to
apply to different types of continuous systems. The normal mode analysis for solving structural natural
modes and the transient solution analysis by the TMA approach were treated. However, the harmonic
and spectrum response analyses were not provided. Soedel [10] provided a presentation in the transient
and harmonic response analyses by the modal approach, in particular for plates and shells. Gardonio and
Brennan [42] showed a similar formulation for different mobility equations. Wang [43] is the main reference
for which improvements are given and presents the theoretical formulation of generic FRFs for continuous
systems associated with various forms of actuation and sensing methods, particularly for harmonic
response analysis. The generic actuator and sensor eigenfunctions (mode shape functions) are identified and
interpreted physically. Although the spectrum response analysis for continuous system has been widely
discussed [44–46], the solution can be dependent. This work develops a systematic approach in spectrum
response analysis to obtain the statistical quantities, i.e. the mean and standard deviation of the system
response.

This work basically expands Wang’s work [43], regarding the harmonic response analysis only, to the
transient and spectrum response analyses. In this work, the generic solutions of transient, harmonic and
spectrum response analyses by the modal approach are completely shown by a consistently systematic
formulation and are applicable to an arbitrary continuous structure. The solutions are shown as a concise
format by generic force/actuator and response/sensor mode shape functions, respectively. This work enhances
the mathematical formulation in analytically solving the vibration problems for the four types of vibration
analyses.

For modal analysis, the solutions of natural modes for many structures with different boundaries can be
found in handbooks [47–49]. This work defines the orthonormal eigenfunctions or displacement mode shapes
with respect to the mass distribution function and summarizes the orthogonal properties for later use in
transient, harmonic and spectrum analyses. The generic force/actuator mode shape functions and response/
sensor mode shape functions are introduced, respectively. The system response for each type of analysis can be
derived and expressed in a general format in terms of generic force/actuator mode shape functions and
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response/sensor mode shape functions. Section 2 presents the four types of vibration analyses for differential
eigenvalue problems of self-adjoint systems. The analytical approaches can account for different structures,
boundary conditions, excitation forms and sensing devices or response variables of interest. Sections 3
and 4 show the lateral vibration of one-dimensional beam and two-dimensional plate problems, respect-
ively, by following the generic formulation in Section 2 to analytically solve for the four types of vibration
analyses.

The developed systematic formulation can provide a simple approach to deal with the mathematical
derivation of presented system response for complex combinations of different types of structures, boundary
conditions and forcing functions. The formulation is straightforward and advantageous in numerical
programming for solution. The presented general formulation of analytical approaches can also be applied to
other structures, such as strings, bars, shafts and membranes as well.
2. Theoretical analysis

The PDE describing the motion of a continuous system over domain D can be expressed as follows [6]:

L½wðP; tÞ� þ
q
qt

C½wðP; tÞ� þMðPÞ
q2wðP; tÞ

qt2
¼ f ðP; tÞ (1)

where L and C are linear homogeneous self-adjoint differential operators consisting of derivatives through
order 2p with respect to the spatial coordinates P but not with respect to time t, containing the information
concerning the stiffness and damping functions. M(P) is the mass distribution function of the system. f(P, t) is
the general force function. For simplicity, the boundary conditions are assumed to be homogeneous so that at
every point on the boundaries of domain D the boundary conditions must be satisfied:

Bi½wðP; tÞ� ¼ 0; i ¼ 1; 2; . . . ; p (2)

Bi is the linear homogeneous differential operator containing derivatives normal to the boundary and along
the boundary of order through 2p�1.

The system initial conditions can be specified as follows:

wðP; 0Þ ¼ w0ðPÞ (3)

_wðP; 0Þ ¼ _w0ðPÞ (4)

where w0(P) and _w0ðPÞ are the initial displacement and velocity, respectively.
2.1. Modal analysis

2.1.1. Eigenproblem analysis

With normal modes analysis, the eigenvalue problem associated with the homogeneous undamped system
can be shown to be [6]

L½w� ¼ lMw ¼ o2Mw (5)

The above equation must be satisfied over domain D, and w is subject to the boundary conditions as shown
in Eq. (2). The eigenvalue problem can be solved. An infinite set of natural frequencies or and their
corresponding eigenfunctions wr(P) can then be obtained. And, the orthonormal eigenfunction or
displacement mode shape function with respect to the mass distribution function M(P) can be determined
and is unique as follows:

frðPÞ ¼
wrðPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

D
MðPÞ½wrðPÞ�

2 dDðPÞ
q (6)
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2.1.2. Orthogonality of eigenfunctions

If the eigenfunctions are orthonormal as defined in Eq. (6), thenZ
D

MðPÞfrðPÞfsðPÞdDðPÞ ¼ drs (7)

Z
D

frðPÞL½fsðPÞ�dDðPÞ ¼ o2
rdrs (8)

where drs is the Kronecker delta.
If the Rayleigh proportional damping is assumed and maintains the following relationship:

C ¼ aM þ bL (9)

where a and b are some constants, by recalling Eqs. (7) and (8), the orthogonal properties of eigenfunctions
with respect to the damping can be shown to be as follows:Z

D

frðPÞC½fsðPÞ�dDðPÞ ¼

Z
D

frðPÞðaM þ bLÞ½fsðPÞ�dDðPÞ

¼ ðaþ bo2
r Þdrs

¼ 2zrordrs (10)

where zr is the rth modal damping ratio and dependent on the natural frequency as follows:

zr ¼
a

2or

þ
bor

2
(11)

2.2. Transient response analysis

The force function for the generic form of actuation force applied at Pj can be expressed by

f ðPj ; tÞ ¼ f jðtÞGðPjÞ (12)

where fj(t) and G(Pj) are the temporal function and the spatial function of the jth generic actuation force,
respectively. From the expansion theorem, the displacement response can be assumed to be as follows:

wðP; tÞ ¼
X1
r¼1

frðPÞqrðtÞ (13)

By the substitution of Eqs. (12) and (13) into Eq. (1), Eq. (1) is then multiplied by fs(P) and integrated over
domain D as follows:

qrðtÞ
X1
r¼1

Z
D

fsðPÞL½frðPÞ�dDðPÞ þ _qrðtÞ
X1
r¼1

Z
D

fsðPÞC½frðPÞ�dDðPÞ

(

þ €qrðtÞ
X1
r¼1

Z
D

fsðPÞMðPÞfrðPÞdDðPÞ

)
¼ f jðtÞ

Z
D

fsðPÞGðPjÞdDðPÞ (14)

By the substitution of the orthogonal properties of eigenfunctions as shown in Eqs. (7), (8) and (10), the
above equation can be reduced to obtain an infinite set of modal domain equations as follows:

€qr þ 2zror _qr þ o2
r qr ¼ NrðtÞ; r ¼ 1; 2; . . . (15)

where

NrðtÞ ¼ f jðtÞ

Z
D

frðPÞGðPjÞdDðPÞ

¼ f jðtÞf
F
r ðPjÞ ¼ f jðtÞf

F
r;j (16)
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where fF
r ðPjÞ is the generic force mode shape function related to the displacement mode shape function and

force spatial function as follows:

fF
r ðPjÞ ¼ fF

r;j ¼

Z
D

frðPÞGðPjÞdDðPÞ (17)

It should be noted that the original system equation in the physical domain as shown in Eq. (1) is a PDE
expressed by physical parameters. Through the TMA procedure as shown above, the PDE, i.e. the physical
domain equation, can be reduced to an infinite set of ODEs, i.e. the modal domain equations, as shown in
Eq. (15) expressed by modal parameters. It should also be noted that qr is termed the modal coordinate [8] in
this work. However, there are some other terminologies, such as the generalized coordinate [1], modal
participant factor [10] and normal coordinate [9], with the same physical contents.

By imposing the initial condition Eq. (3) in Eq. (13) as follows:

wðP; 0Þ ¼
X1
r¼1

frðPÞqrð0Þ ¼ w0ð0Þ (18)

By multiplication of M(P)fs(P) with the above equation and integration over domain D as follows:

Z
D

MðPÞfsðPÞ
X1
r¼1

frðPÞqrð0Þ

( )
dDðPÞ ¼

Z
D

MðPÞfsðPÞfw0ð0ÞgdDðPÞ (19)

By substituting the orthogonal properties of the eigenfunctions into the left-hand side of the above
equation, one can obtain the modal coordinate initial condition as follows:

qr0 ¼ qrð0Þ ¼

Z
D

MðPÞfrðPÞw0ðPÞdDðPÞ (20)

Similarly,

_qr0 ¼ _qrð0Þ ¼

Z
D

MðPÞfrðPÞ _w0ðPÞdDðPÞ (21)

Therefore, the modal coordinate response qr(t) in Eq. (15) can be solved as follows:

qrðtÞ ¼ qr;ICðtÞ þ qr;IRFðtÞ (22)

Soedel [10] showed the solution of the modal coordinate, and Table 1 summarizes the solution of qr(t) for
different damping conditions for completion. The under-damped system, i.e. 0oxro1, is shown as follows:

qr;ICðtÞ ¼ e�zrort qr0 cos odrtþ
_qr0 þ zrorqr0

odr

sin odrt

� �
(23)

qr;IRFðtÞ ¼

Z t

0

NrðtÞhrðt� tÞdt (24)

odr ¼ or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
(25)

hrðtÞ ¼
1

odr

e�zrort sin odrt (26)

By the substitution of qr(t) into Eq. (13), the system response can be determined.

wðP; tÞ ¼
X1
r¼1

frðPÞqrðtÞ (27)
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Table 1

Modal coordinate solution for different damping conditions

€qr þ 2zror _qr þ o2
r qr ¼ NrðtÞ,

qrð0Þ ¼ qr0; _qrð0Þ ¼ _qr0

qrðtÞ ¼ qr;ICðtÞ þ qr;IRFðtÞ

Damping ratio zr Free vibration response due to initial condition qr,IC (t) Forced response due to modal

force by IRF solution

qr;IRFðtÞ ¼
R t

0 NrðtÞhrðt� tÞdt

zr ¼ 0 undamped
qr;ICðtÞ ¼ qr0 cos ortþ

_qr0

or

sin ort

� �
hrðtÞ ¼

1

or

sin ort

0ozro1 Under-damped
qr;ICðtÞ ¼ e�xrort qr0 cos odrtþ

_qr0 þ zrorqr0

odr

sin odrt

� �

odr ¼ or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q hrðtÞ ¼
1

odr

e�zrort sin odrt

zr ¼ 1 Critical-damped qr;ICðtÞ ¼ ½qr0 þ ð _qr0 þ orqr0Þt�e
�ort hrðtÞ ¼ t e�ort

zr41 Over-damped
qr;ICðtÞ ¼ e�xrort qr0 cosh odrtþ

_qr0 þ zrorqr0

ōdr

sinh odrt

� �

odr ¼ or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2r � 1

q hrðtÞ ¼
1

ōdr

e�zrort sinh odrt

or ¼ 0 €qr ¼ NrðtÞ if or ¼ 0

qr;ICðtÞ ¼ qr0 þ _qr0t

hr(t) ¼ t
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Now, introduce a sensing or a response operator R on w(P, t) to obtain the response variable s(P, t) as follows:

sðP; tÞ ¼
X1
r¼1

R½frðPÞqrðtÞ� (28)

The response operator can be related to the spatial and temporal variables. However, R is normally
dependent on the spatial variable only. The response variable can then be rewritten as follows:

sðP; tÞ ¼
X1
r¼1

R½frðPÞ�qrðtÞ ¼
X1
r¼1

fS
r ðPÞqrðtÞ (29)

where

fS
r ðPÞ ¼ R½frðPÞ� (30)

fS
r ðPÞ is the generic response or the sensor mode shape function. One will see the advantage of the response

operator in later analysis as well as for the case studies.

2.3. Harmonic response analysis

Wang [43] has theoretically derived the formulation of generic FRFs for continuous systems. The following
derivation is partly taken from Wang [43] and modified to comply with this work’s formulation.

2.3.1. Harmonic excitation for generic actuation force

In harmonic response analysis, the major work is to determine the FRFs of the system. For harmonic
excitation, the general force function for the generic form of actuation force applied at Pj with magnitude Aj
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can be assumed and to be expressed by

f ðPj ; tÞ ¼ f jðtÞGðPjÞ ¼ Aj e
iotGðPjÞ (31)

where G(Pj) is the spatial function of the jth generic actuation force and o is the excitation frequency. The
steady-state response will also be harmonic. From the expansion theorem, the displacement response can be
assumed to be as follows:

wðP; tÞ ¼
X1
r¼1

frðPÞqrðtÞ

¼
X1
r¼1

frðPÞQrðoÞe
iot (32)

where Qr(o) is the frequency-dependent modal amplitude of the rth mode depending on the form of actuation
force. By the substitution of Eqs. (31) and (32) into the system equation in Eq. (1), Eq. (1) is then multiplied by
fs(P) and integrated over domain D as follows:

QrðoÞ
X1
r¼1

Z
D

fsðPÞL½frðPÞ�dDðPÞ þ io
X1
r¼1

Z
D

fsðPÞC½frðPÞ�dDðPÞ

(

�o2
X1
r¼1

Z
D

fsðPÞMðPÞfrðPÞdDðPÞ

)
¼ Aj

Z
D

fsðPÞGðPjÞdDðPÞ (33)

Notice that the eiot term is canceled out. By the substitution of the orthogonal properties of eigenfunctions
as shown in Eqs. (7)–(10), the above equation can be reduced to

QrðoÞ½o
2
r � o2 þ i2zroro� ¼ Aj

Z
D

frðPÞGðPjÞdDðPÞ (34)

such that

QrðoÞ ¼
Ajf

F
r ðPjÞ

ðo2
r � o2Þ þ ið2zroroÞ

(35)

It should be noted that fF
r ðPjÞ is the generic force mode shape function as defined in Eq. (17). In

experimental modal testing, the force input is applied by actuators, and therefore, fF
r ðPjÞ can also be termed

the generic actuator eigenfunction [43] that is named the generic actuator mode shape function in this work.
2.3.2. Harmonic response for generic sensing device

In practical implementation of sensing devices, accelerometers or other sensors can be applied to measure
the structural response at location Pi. For harmonic response, the measured quantity s(Pi, t) can then be
defined by a sensing or a response operator R operating on the structural displacement response as follows:

sðPi; tÞ ¼ R½wðPi; tÞ� ¼ R½wðPiÞ�e
iot (36)

By the substitution of the displacement response as shown in Eq. (32) into the above equation, the measured
quantity can be rewritten as follows:

sðPi; tÞ ¼ eiot
X1
r¼1

QrðoÞR½frðPiÞ� (37)

By substituting Qr(o) into Eq. (35) into the above equation, the measured quantity from the sensor at
location Pi can be derived as follows:

sðPi; tÞ ¼ eiot
X1
r¼1

AjfR½frðPiÞ�gf
R

D
frðPÞGðPjÞdDðPÞg

ðo2
r � o2Þ þ ið2zroroÞ

¼ SðPi;oÞeiot ¼ Si e
iot (38)
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therefore,

Si ¼
X1
r¼1

AjfR½frðPiÞ�gf
R

D
frðPÞGðPjÞdDðPÞg

ðo2
r � o2Þ þ ið2zroroÞ

(39)

2.3.3. FRF between generic sensing device and generic actuation force

The FRF between the response of the ith generic sensing device at location Pi and the magnitude of the jth
generic actuation force applied at location Pj can be derived from Eq. (39) as follows:

Hij ¼
Si

Aj

¼
X1
r¼1

fR½frðPiÞ�gf
R

D
frðPÞGðPjÞdDðPÞg

ðo2
r � o2Þ þ ið2zroroÞ

¼
X1
r¼1

fS
r;if

F
r;j

ðo2
r � o2Þ þ ið2zroroÞ

(40)

where

fS
r;i ¼ R½frðPiÞ� (41)

fF
r;j ¼

Z
D

frðPÞGðPjÞdDðPÞ (42)

where fF
r ðPÞ and fS

r ðPÞ can be defined as the generic actuator and sensor mode shape functions, respectively.
fF

r;j and fS
r;i can then be identified as the scalar values of the generic actuator and sensor mode shape functions

at locations Pj and Pi, respectively. It should be noted that the FRF is expressed in the conventional modal
format analogous to the discrete mdof system and reveals convenience in programming as well as for physical
interpretation of fF

r ðPÞ and fS
r ðPÞ [43].

2.4. Spectrum response analysis

For a system subject to random excitation, transient response analysis in the time domain is not feasible.
Frequency domain analysis is generally adopted [44–46]. With the operation of the Fourier transform
on the force function as shown in Eq. (12), the Fourier spectrum of the jth generic force f(Pj, t) can be
obtained:

F ðPj ;oÞ ¼ I½f ðPj ; tÞ� ¼ I½f jðtÞ�GðPjÞ ¼ F jðoÞGðPjÞ (43)

where I denotes the Fourier transform operator and Fj(o) is the Fourier spectrum of fj(t). From the definition
of the PSD function [50], the PSD function for f(Pj, t) can be defined as follows:

Sff ðPj ;oÞ ¼ lim
T!1

1

T
E½F�ðPj ;oÞF ðPj ;oÞ�

¼ lim
T!1

1

T
E½F�j ðoÞGðPjÞFjðoÞGðPjÞ�

¼ GðPjÞGðPjÞ lim
T!1

1

T
E½F�j ðoÞF jðoÞ�

¼ GðPjÞGðPjÞSf jf j
ðoÞ (44)

where

Sf jf j
ðoÞ ¼ lim

T!1

1

T
E½F�j ðoÞF jðoÞ� (45)

From the expansion theorem shown in Eq. (27), the system response is as follows:

wðP; tÞ ¼
X1
r¼1

frðPÞqrðtÞ (46)



ARTICLE IN PRESS
B.-T. Wang / Journal of Sound and Vibration 319 (2009) 1222–12511230
By employing the system response variable s(P, t) in Eq. (28) for the response operator R related to the
spatial function only, the measured quantity can be rewritten as follows:

sðP; tÞ ¼
X1
r¼1

R½frðPÞ�qrðtÞ

¼
X1
r¼1

fS
r ðPÞqrðtÞ (47)

Perform the Fourier transform on s(P, t) to obtain its Fourier spectrum as follows:

SðP;oÞ ¼ I½sðP; tÞ�

¼ I
X1
r¼1

fS
r ðPÞqrðtÞ

" #

¼
X1
r¼1

fS
r ðPÞI½qrðtÞ�

¼
X1
r¼1

fS
r ðPÞQrðoÞ (48)

The PSD function of sensing response s(P, t) can also be obtained:

SssðP;oÞ ¼ lim
T!1

1

T
E½S�ðP;oÞSðP;oÞ�

¼ lim
T!1

1

T
E
X1
r¼1

fS
r ðPÞQ

�
r ðoÞ

X1
s¼1

fS
s ðPÞQsðoÞ

" #

¼
X1
r¼1

X1
s¼1

fS
r ðPÞf

S
s ðPÞ lim

T!1

1

T
E½Q�r ðoÞQsðoÞ�

¼
X1
r¼1

X1
s¼1

fS
r ðPÞf

S
s ðPÞSqrqs

ðoÞ (49)

where

Sqrqs
ðoÞ ¼ lim

T!1

1

T
E½Q�r ðoÞQsðoÞ� (50)

For the determination of Sqrqs
ðoÞ, modal equations as shown in Eqs. (15) and (16) are rewritten as follows:

€qr þ 2zror _qr þ o2
r qr ¼ NrðtÞ; r ¼ 1; 2; . . . (51)

where

NrðtÞ ¼ f jðtÞ

Z
D

frðPÞGðPjÞdDðPÞ ¼ f jðtÞf
F
r ðPjÞ ¼ f jðtÞf

F
r;j (52)

Let Nr(t) ¼ Nre
iot and qr(t) ¼ Qr e

iot be substituted into Eq. (51), the FRF between Qr and Nr can be
determined:

HrðoÞ ¼
QrðoÞ
NrðoÞ

¼
1

ðo2
r � o2Þ þ ið2zroroÞ

(53)

such that

QrðoÞ ¼ HrðoÞNrðoÞ (54)
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By the operation of the Fourier transform on Nr(t) in Eq. (52) to obtain its Fourier spectrum:

NrðoÞ ¼ I½NrðtÞ�

¼ I½f jðtÞ�

Z
D

frðPÞGðPjÞdDðPÞ

¼ F jðoÞf
F
r ðPjÞ ¼ F jðoÞf

F
r;j (55)

The PSD function of Nr(t) will be as follows:

SNrNs
ðoÞ ¼ lim

T!1

1

T
E½N�r ðoÞNsðoÞ�

¼ lim
T!1

1

T
E½F�j ðoÞf

F
r ðPjÞFjðoÞf

F
s ðPjÞ�

¼ fF
r ðPjÞf

F
s ðPjÞ lim

T!1

1

T
E½F�j ðoÞFjðoÞ�

¼ fF
r ðPjÞf

F
s ðPjÞSf j f j

ðoÞ (56)

By the substitution of Qr(o) in Eq. (54) into Sqrqs
ðoÞ in Eq. (50),

Sqrqs
ðoÞ ¼ lim

T!1

1

T
E½Q�r ðoÞQsðoÞ�

¼ lim
T!1

1

T
E½H�r ðoÞN

�
r ðoÞHsðoÞNsðoÞ�

¼ H�r ðoÞHsðoÞ lim
T!1

1

T
E½N�r ðoÞNsðoÞ�

¼ H�r ðoÞHsðoÞSNrNs
ðoÞ (57)

The PSD function of response variable s(P, t) from Eq. (49) can be finally expressed:

SssðP;oÞ ¼
X1
r¼1

X1
s¼1

fS
r ðPÞf

S
s ðPÞfSqrqs

ðoÞg

¼
X1
r¼1

X1
s¼1

fS
r ðPÞf

S
s ðPÞfH

�
r ðoÞHsðoÞ½SNrNs

ðoÞ�g

¼
X1
r¼1

X1
s¼1

fS
r ðPÞf

S
s ðPÞH

�
r ðoÞHsðoÞ½f

F
r ðPjÞf

F
s ðPjÞSf jf j

ðoÞ� (58)

The PSD function of response variable s(P, t) at Pi location can then be obtained:

Ssisi
ðoÞ ¼ SssðPi;oÞ

¼
X1
r¼1

X1
s¼1

fS
r ðPiÞf

S
s ðPiÞf

F
r ðPjÞf

F
s ðPjÞH

�
r ðoÞHsðoÞSf j f j

ðoÞ (59)

The root mean square (rms) value of sensing response s(Pi, t) can then be obtained:

s2i;rms ¼ s2i ¼

Z 1
�1

Ssisi
ðoÞdo

¼

Z 1
�1

X1
r¼1

X1
s¼1

fS
r ðPiÞf

S
s ðPiÞf

F
r ðPjÞf

F
s ðPjÞH

�
r ðoÞHsðoÞSf jf j

ðoÞdo

¼
X1
r¼1

X1
s¼1

fS
r ðPiÞf

S
s ðPiÞf

F
r ðPjÞf

F
s ðPjÞ

Z 1
�1

H�r ðoÞHsðoÞSf j f j
ðoÞdo (60)
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and

s2si
¼ s2i � sið Þ

2

¼ ðsi;rmsÞ
2
� ðsiÞ

2 (61)

It can be noted that the rms of sensing response s(Pi, t) in Eq. (60) is valid for generic random force
excitation in which Hr(o) is shown in Eq. (53). For the assumption of white noise excitation Sf jf j

ðoÞ ¼ S0 with
zero mean f j ¼ E½f jðtÞ� ¼ 0 and the system with light damping and well-separated modes, Eq. (60) can be
simplified as follows:

s2si
¼ s2i;rms ¼ S0

X1
r¼1

X1
s¼1

fS
r ðPiÞf

S
s ðPiÞf

F
r ðPjÞf

F
s ðPjÞ

Z 1
�1

H�r ðoÞHsðoÞdo

� S0

X1
r¼1

½fS
r ðPiÞf

F
r ðPjÞ�

2

Z 1
�1

jHrðoÞj2 do (62)

where [44]

Z 1
�1

jHrðoÞj2 do ¼
Z 1
�1

1

ðo2
r � o2Þ þ ið2zroroÞ

����
����
2

do ¼
p

2zro3
r

(63)

Therefore,

s2si
¼ s2i;rms �

X1
r¼1

½fS
r ðPiÞf

F
r ðPjÞ�

2 pS0

2zro3
r

(64)

The following derivation is to find the mean of s(P, t) at Pi location, si. Recall Eq. (12) for a general force
function to obtain the mean of f(Pj, t) as follows:

f ðPj ; tÞ ¼ E½f ðPj ; tÞ� ¼ E½f jðtÞ�GðPjÞ ¼ f jGðPjÞ (65)

where f j ¼ E½f jðtÞ� is the mean of fj(t). Recall Eq. (16) to obtain the mean of modal force Nr(t):

NrðtÞ ¼ E½NrðtÞ� ¼ E½f jðtÞ�f
F
r ðPjÞ ¼ f jf

F
r ðPjÞ (66)

Recall Eq. (22), where the qr,IC(t) term can be neglected for random excitation and, therefore,
qr(t) ¼ qr,IRF(t), to obtain the mean of modal coordinate qr(t) as follows:

qr ¼ E½qrðtÞ� ¼ E½qr;IRFðtÞ�

¼ E

Z t

0

NrðtÞhrðt� tÞdt
� �

¼ E

Z t

0

Nrðt� tÞhrðtÞdt
� �

¼

Z t

0

E½Nrðt� tÞ�hrðtÞdt

¼ E½Nrðt� tÞ�
Z t

0

hrðtÞdt

¼ NrHrð0Þ (67)
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Also, recall Eq. (47) to obtain the mean of s(P, t) as follows:

s ¼ E½sðP; tÞ� ¼ E
X1
r¼1

fS
r ðPÞqrðtÞ

" #

¼
X1
r¼1

fS
r ðPÞfE½qrðtÞ�g ¼

X1
r¼1

fS
r ðPÞfqrg

¼
X1
r¼1

fS
r ðPÞf½Nr�Hrð0Þg

¼
X1
r¼1

fS
r ðPÞ½f jf

F
r ðPjÞ�Hrð0Þ

¼
X1
r¼1

fS
r ðPÞf

F
r ðPjÞ

o2
r

f j (68)

Finally, the mean of s(P, t) at Pi location, si, can be obtained as follows:

si ¼ sðPi; tÞ ¼
X1
r¼1

fS
r ðPiÞf

F
r ðPjÞ

o2
r

f j (69)

With the knowledge of the mean and standard deviation of si(t) ¼ s(Pi, t) at Pi location, i.e. si and ssi, the
Gaussian distribution function can be obtained as follows:

pðsiÞ ¼
1

ssi

ffiffiffiffiffiffi
2p
p e½�ð1=2Þððsi�siÞ=ssi

Þ
2
� (70)

In summary for spectrum response analysis, the PSD function and the mean of temporal function fj(t) are
known as the input variables and given in Eq. (45) for Sf if i

ðoÞ and f j ¼ E½f jðtÞ�, respectively. The system
response can be obtained as follows:
(1)
 Ssisi
ðoÞ is the PSD function of s(P, t) at Pi location as shown in Eq. (59).
(2)
 si is the mean of s(P, t) at Pi location as shown in Eq. (69).

(3)
 si,rms is the rms value of system response s(P, t) at Pi location as shown in Eq. (60) as well as in Eq. (64), in

particular for white noise random excitation with zero mean f j ¼ 0.

(4)
 ssi is the standard deviation of si(t) ¼ s(Pi, t) at Pi location as shown in Eq. (61) as well as in Eq. (64) for

white noise excitation with f j ¼ 0, respectively.

(5)
 p(si) is the Gaussian distribution function of si(t) ¼ s(Pi, t) as shown in Eq. (70).
The above statistical quantities can be used to evaluate the structural response due to a generic sensing
device for engineering design regarding generic random force input.
3. Case study: one-dimensional beam problem

Section 2 has completely derived four types of vibration analyses for continuous systems with the solutions
expressed in terms of generic force/actuator and response/sensor mode shape functions, respectively. This
section will follow the developed formulation shown in Section 2 and demonstrate the application to the
lateral vibration of a one-dimensional uniform beam problem. First, the equation of motion for the uniform
Euler–Bernoulli beam including a damping effect can be derived as follows [1]:

EI
q4wðx; tÞ

qx4
þ C

qwðx; tÞ

qt
þ rA

q2wðx; tÞ

qt2
¼ f ðx; tÞ (71)
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where E is Young’s modulus, I the moment of inertia, r the density, A the cross-sectional area and C the
damping coefficient. In comparison to Eq. (1), the following variables can be identified.

L ¼ EI
q4

qx4

C ¼ C

M ¼ rA

P ¼ x (72)

Some common boundary conditions at each of both ends in beam can be any two of the following, including
deflection, slope, bending moment and shear force:

wðx; tÞ ¼ 0 (73)

yðx; tÞ ¼
qwðx; tÞ

qx
¼ 0 (74)

Mðx; tÞ ¼ EI
q2wðx; tÞ

qx2
¼ 0 (75)

V ðx; tÞ ¼
q
qx

EI
q2wðx; tÞ

qx2

� �
¼ 0 (76)

The beam initial conditions can be specified as follows:

wðx; 0Þ ¼ w0ðxÞ (77)

_wðx; 0Þ ¼ _w0ðxÞ (78)

where w0(x) and _w0ðxÞ indicate the initial displacement and velocity of the beam, respectively.

3.1. Modal analysis

Through eigenproblem analysis, an infinite set of natural frequencies or and their corresponding
eigenfunctions wrðxÞ for various end conditions of beams can be obtained [2]. It should be noted that wr(x) can
be properly redefined by using Eq. (6) and is unique as follows:

frðxÞ ¼
wrðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR L

0 rA½wrðxÞ�
2dx

q (79)

The orthogonal relations of displacement mode shape functions fr(x) can be written as follows according to
Eqs. (7)–(10): Z L

0

rAfrðxÞfsðxÞdx ¼ drs (80)

Z L

0

frðxÞEI
q4fsðxÞ

qx4
dx ¼ o2

rdrs (81)

Z L

0

CfrðxÞfsðxÞdx ¼ 2zrordrs (82)

The free vibration analysis of various kinds of beams has been widely studied [11–17] to solve for natural
frequencies and corresponding mode shapes. This work does not intend to solve such a problem but provides
the results of natural modes for the general approach to the solution of transient, harmonic and spectrum
response analyses as follows: once the natural modes of vibration can be properly determined and their
orthogonal properties demonstrated.



ARTICLE IN PRESS
B.-T. Wang / Journal of Sound and Vibration 319 (2009) 1222–1251 1235
It should be noted that in this work those simple boundary conditions as shown in Eqs. (73)–(76) are
considered so that the displacement mode shape fr(x) can maintain the orthogonal relations shown in Eqs.
(80)–(82). Ginsberg [8] showed the mass and spring ends’ orthogonal conditions as well but are omitted here
for brevity. Here, two common boundary conditions of a beam are illustrated as follows:
(1)
(83)

(84)

Tab

Exa

Type

Forc

Tem

Spat

Mag

Loca

Gen

func

fF
r ðx
Simply supported beam:

or ¼ a2r

ffiffiffiffiffiffiffi
EI

rA

s
; ar ¼

rp
L

frðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2

rAL

s
sin arx
(2)
(85)

(86)
Cantilever beam:

or ¼ a2r

ffiffiffiffiffiffiffi
EI

rA

s

frðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
1

rAL

s
½ðsin arx� sinh arxÞ þ srðcos arx� cosh arxÞ�

sr ¼
sin arLþ sin arL

cos arLþ cosh arL

where for a cantilever beam the value of arL can be found in many vibration textbooks [47].
3.2. Transient response analysis

Consider the generic force acting on the beam with the temporal and spatial functions as follows:

f ðx; tÞ ¼ f jðtÞGðxÞ (87)

Some examples of spatial functions for several types of forces are given in Table 2 and depicted in Fig. 1.
le 2

mples for different types of forces for beam transient dynamic analysis

of force Ideal impact point

force

Step point force Ideal impact point

moment

Ideal impact PZT actuator for bending

[51]

e function f ðx; tÞ ¼ f jðtÞGðxÞ Fjdðt� t0Þdðx� xf j
Þ Fjuðt� t0Þdðx� xf j

Þ Mjdðt� t0Þd
0
ðx� xmj

Þ MCj
dðt� t0Þ½d

0
ðx� xc1jÞ � d0ðx� xc2jÞ�

poral function fj(t) Fjd(t�t0) Fju(t�t0) Mjd(t�t0) MCj
dðt� t0Þ

ial function G(x) dðx� xf j
Þ dðx� xf j

Þ d0ðx� xmj
Þ ½d0ðx� xc1jÞ � d0ðx� xc2jÞ�

nitude Fj Fj Fj Mj MCj

tion xj xf j
xf j

xmj
xc1j,xc2j

eric force mode shape

tion

jÞ ¼
RL

0 frðxÞGðxjÞdx

fF
r ðxjÞ ¼ frðxf j

Þ fF
r ðxjÞ ¼ frðxf j

Þ fF
r ðxjÞ ¼ f0rðxmj

Þ fF
r ðxjÞ ¼ f0rðxc2jÞ � f0rðxc1jÞ
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xfj

xai

x�i

xmj

xc1j

xp1i

xp2i

xc2j

i-th
rotational

sensor
x

i-th
accelerometerz

L

L

i-th
PVDF
sensor

j-th
Distilled

force
Γ (x)

z

x

j-th
PZT

actuator

j-th
Point force

j-th
Point moment

Fig. 1. The arrangement and coordinates of actuators and sensors in a beam: (a) force/actuator and (b) response/sensor.
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From the expansion theorem as shown in Eq. (13), the beam lateral displacement response can be assumed
to be as follows:

wðx; tÞ ¼
X1
r¼1

frðxÞqrðtÞ (88)

By following the TMA procedure as shown in Section 2 and with the substitution of Eqs. (87) and (88) into
Eq. (71), Eq. (71) is then multiplied by fs(x) and integrated over beam length L as follows:

qrðtÞ
X1
r¼1

Z L

0

fsðxÞ EI
q4frðxÞ

qx4

� �
dxþ _qrðtÞ

X1
r¼1

Z L

0

CfsðxÞ½frðxÞ�dx

(

þ €qrðtÞ
X1
r¼1

Z L

0

rAfsðxÞfrðxÞdx

)
¼ f jðtÞ

Z L

0

fsðxÞGðxÞdx (89)

By the substitution of the orthogonal properties of the eigenfunctions as shown in Eqs. (80)–(82), the PDE
in the physical domain can be reduced to an infinite set of ODEs in the modal domain as follows:

€qr þ 2zror _qr þ o2
r qr ¼ NrðtÞ; r ¼ 1; 2; . . . (90)
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where

NrðtÞ ¼ f jðtÞ

Z L

0

frðxÞGðxÞdx ¼ f jðtÞf
F
r ðxjÞ (91)

The modal coordinate initial conditions can be obtained from Eqs. (20) and (21) as follows:

qr0 ¼ qrð0Þ ¼

Z L

0

rAfrðxÞw0ðxÞdx (92)

Similarly,

_qr0 ¼ _qrð0Þ ¼

Z L

0

rAfrðxÞ _w0ðxÞdx (93)

Finally, the modal coordinate response qr(t) in Eq. (90) can be solved and gives the same expressions as
shown in Eqs. (22)–(26). Therefore, the transient displacement response due to the generic force as shown in
Eq. (87) can be solved. It should be noted that the formulation is generic and can be easily adapted for
different boundary conditions, such as simply supported and cantilever beams as shown, and force conditions
as illustrated in Table 2.

By introducing the response operator R on w(x, t) to obtain the response variable s(x, t) as follows:

sðx; tÞ ¼ R½wðx; tÞ� ¼
X1
r¼1

R½frðxÞ�qrðtÞ ¼
X1
r¼1

fS
r ðxÞqrðtÞ (94)

where

fS
r ðxÞ ¼ R½frðxÞ� (95)

fS
r ðxÞ is the generic sensor or the response mode shape function. Table 3(a) and (b) show several examples of

sensing and response operators for typical sensing devices and structural responses of interest of the beam,
respectively. The advantage of the formulation can be summarized as follows:
(1)
 The spatial function G(x) for the generic force acting on the beam is introduced and results in the generic
force mode shape function fF

r ðxjÞ that is employed to characterize the modal force Nr(t) as shown in
Eq. (91) and suitable for arbitrary force application. Then, the modal coordinate response qr(t) can be
obtained from Eqs. (22)–(26). Table 2 summarizes several examples of typical forces and their
corresponding fF

r ðxjÞ.

(2)
 The response operator R is also defined to obtain the response variable s(x, t) as shown in Eq. (94) that

can be determined from the generic sensor/response mode shape function fS
r ðxÞ. Table 3(a) shows

some typical sensing devices and their corresponding generic sensor/response mode shape functions,
fS

r ðxÞ. Displacement sensors, accelerometers and rotational sensors are point-type sensors, while the
PVDF sensor is a distributed-type sensor [51–53]. Table 3(b) shows typical responses of interest,
including the slope (strain), bending moment, shear force and the maximum bending stress in the
beam.
(3)
 Both fF
r ðxjÞ and fS

r ðxiÞ are functions of displacement mode shape function fS
r ðxÞ. The developed

formulation is valid for arbitrary boundaries when fr(x) satisfies the orthogonal properties as shown in
Eqs. (80)–(82). From the viewpoint of numerical programming for solution, the formulation is of great
convenience in application, since only both the generic force and the response mode shape functions need
to be rearranged accordingly.
(4)
 It should be noted that the solution form revealed in Eq. (91) is not only valid for the illustrated simply
supported or cantilever boundary condition but also for complex beams, such as with non-uniform
thickness [14], mass-loaded [11–13,15], composite [17] or the various end boundaries [13,16], as long as the
displacement mode shape fr(x) can maintain the corresponding orthogonal relations similar to those
shown in Eqs. (80)–(82).
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Table 3

Examples of response operators for typical sensing devices or structural responses of interest of beam structures
(a) Typical sensing devices

Sensor Displacement sensor Accelerometer Rotational (slope) sensor PVDF sensor [51,52,53]

Location xi
xdi

xai
xyi xp1i, xp2i

Measured quantity

sðxj Þ ¼ R½wðxi ; tÞ�

wðxdi
Þ q2wðx; tÞ

qt2

����
x¼xai

qwðx; tÞ

qx

����
x¼xyi

Kp

qwðx; tÞ

qx

����
x¼xp1i

�
qwðx; tÞ

qx

����
x¼xp2i

" #

Sensing operator R 1jx¼xdi
q2

qt2

����
x¼xai

q
qx

����
x¼xyi

Kp

q
qx

����
x¼xp1i

�
q
qx

����
x¼xp2i

" #

Generic sensor mode shape

function fS
r ðxiÞ ¼ R½frðxiÞ�

fS
r ðxiÞ ¼ frðxdi

Þ fS
r ðxiÞ ¼ frðxai

Þ fS
r ðxiÞ ¼ f0rðxyi

Þ fS
r ðxiÞ ¼ Kp½f

0
rðxp1iÞ � f0rðxp2iÞ�

(b) Typical structural responses of interest

Response Slope (Strain) Moment Shear force Max. bending stress

Location xi xi xi xi xi

Measured quantity

sðxj Þ ¼ R½wðxi ; tÞ�
yðxi ; tÞ ¼

qwðx; tÞ

qx

����
x¼xyi

Mðxi ; tÞ ¼ EI
q2wðx; tÞ

qx2

����
x¼xi

V ðxi ; tÞ ¼ EI
q3wðx; tÞ

qx3

����
x¼xi

sðxi ; tÞ ¼ EZ
q2wðx; tÞ

qx2

����
x¼xi

Sensing operator R q
qx

����
x¼xi

EI
q2

qx2

����
x¼xi

EI
q3

qx3

����
x¼xi

EZ
q2

qx2

����
x¼xi

Generic sensor mode shape

function fS
r ðxiÞ ¼ R½frðxiÞ�

fS
r ðxiÞ ¼ f0rðxiÞ fS

r ðxiÞ ¼ EIf00r ðxiÞ fS
r ðxiÞ ¼ EIf000r ðxiÞ fS

r ðxiÞ ¼ EZf00r ðxiÞ
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3.3. Harmonic response analysis

Wang [43] has demonstrated the harmonic response analysis for determining the FRFs for different
combinations of actuators and sensors. Different modal testing procedures resulting in different mode shape
functions were also illustrated. Here, a brief summary is provided with a slight modification in accordance
with this paper.

Consider a generic harmonic force with amplitude Aj and excitation frequency o applied at some location
defined by the spatial function G(x). The harmonic force function can be expressed as follows:

f ðx; tÞ ¼ f jðtÞGðxÞ ¼ Aje
iotGðxÞ (96)

Table 2 shows several types of forces with their spatial functions.
From the expansion theorem as shown in Eq. (88), the beam lateral displacement response can also be

assumed to be harmonic as follows:

wðx; tÞ ¼
X1
r¼1

frðxÞqrðtÞ ¼
X1
r¼1

frðxÞQrðoÞe
iot ¼W ðx;oÞeiot (97)

With the employment of the sensing or the response operator R, the response variable s(x, t) can be
expressed as follows:

sðx; tÞ ¼
X1
r¼1

R½frðxÞ�qrðtÞ ¼
X1
r¼1

fS
r ðxÞQrðoÞe

iot ¼ Sðx;oÞeiot (98)

Note: Z ¼ max. distance from the neutral axis of the beam.
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where

Sðx;oÞ ¼
X1
r¼1

fS
r ðxÞQrðoÞ (99)

By following the TMA procedure as shown in the previous section, one can obtain Qr(o) directly from
Eq. (35). Or with the substitution of Eqs. (96) and (98) into the beam equation in Eq. (71), Eq. (71) is then
multiplied by fs(x) and integrated over beam length L, the amplitude of modal coordinate Qr(o) can be
obtained as follows:

QrðoÞ ¼
Aj

R L

0 frðxÞGðxÞdx

ðo2
r � o2Þ þ ið2zroroÞ

¼
Ajf

F
r ðxjÞ

ðo2
r � o2Þ þ ið2zroroÞ

(100)

The beam response variable s(x, t) at x ¼ xi can be obtained from Eq. (98) as follows:

si ¼ sðxi; tÞ ¼
X1
r¼1

fS
r ðxiÞQrðoÞe

iot ¼ Sðxi;oÞeiot ¼ Sie
iot (101)

where Si is the harmonic amplitude of response variable s(x, t) at x ¼ xi as follows:

Si ¼
X1
r¼1

fS
r ðxiÞQrðoÞ (102)

Finally, from Eq. (40) the FRF between the generic force amplitude and the response variable amplitude
can be obtained as follows:

Hij ¼
Si

Aj

¼
X1
r¼1

fS
r ðxiÞf

F

r ðxjÞ

ðo2
r � o2Þ þ ið2zroroÞ

(103)

Tables 2 and 3 show various types of actuator/force and sensor/response for both fF
r ðxjÞ and fS

r ðxiÞ

of beams. The FRF for any combination of actuator/force and sensor/response can then be derived from
Eq. (103). The advantage of the formulation is that it not only shows the physical meaning for both fF

r ðxjÞ and
fS

r ðxiÞ in the modal testing procedure [43] but also provides a great convenience for numerical programming
for the solution. In particular, the FRF, such as the maximum bending stress in a beam due to different forms
of forces, can be easily obtained. Various types of steady-state responses of the beam due to generic forms of
harmonic excitation can be easily determined from Eq. (103) and are applicable to different kinds of complex
beams as well.

3.4. Spectrum response analysis

The general approach for the beam subject to generic random force excitation is considered in this section.
The generic force function can be expressed as follows:

f ðx; tÞ ¼ f jðtÞGðxÞ (104)

Then, the Fourier spectrum of the jth generic force f(x, t) can be obtained:

F ðx;oÞ ¼ I½f ðx; tÞ� ¼ I½f jðtÞ�GðxÞ ¼ FjðoÞGðxÞ (105)

where Fj(o) is the Fourier spectrum of fj(t). From Eq. (44), the PSD function for f(x, t) can be obtained as
follows:

Sff ðxj ;oÞ ¼ ½GðxÞ�2Sf jf j
ðoÞ (106)

where

Sf jf j
ðoÞ ¼ lim

T!1

1

T
E½F�j ðoÞF jðoÞ� (107)
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From transient response analysis as shown in Eq. (94), the beam response variable s(x, t) can be rewritten as
follows:

sðx; tÞ ¼
X1
r¼1

fS
r ðxÞqrðtÞ (108)

The Fourier spectrum and PSD function of s(x, t) can also be obtained from Eqs. (48) and (49), respectively,
as follows:

Sðx;oÞ ¼ I½sðx; tÞ� ¼
X1
r¼1

fS
r ðPÞQrðoÞ (109)

Sssðx;oÞ ¼
X1
r¼1

X1
s¼1

fS
r ðxÞf

S
s ðxÞSqrqs

ðoÞ (110)

where Sqrqs
ðoÞ is the PSD function of qr(t) and can be determined from Eq. (57)

Sqrqs
ðoÞ ¼ H�r ðoÞHsðoÞSNrNs

ðoÞ (111)

where SNrNs
ðoÞ is the PSD function of Nr(t) and can be determined from Eq. (56):

SNrNr
ðoÞ ¼ fF

r ðxjÞf
F
s ðxjÞSf j f j

ðoÞ (112)

where fF
r ðxjÞ is the generic force mode shape function. Table 2 shows some typical force expressions.

Finally, from Eq. (59) and with the imposition of the above equations the PSD of the system response
variable s(x, t) can be finally expressed:

Sssðx;oÞ ¼
X1
r¼1

X1
s¼1

fS
r ðxÞf

S
s ðxÞf

F
r ðxjÞf

F
s ðxjÞH

�
r ðoÞHsðoÞSf j f j

ðoÞ (113)

The PSD function of si(t) ¼ s(xi, t) at x ¼ xi location can be obtained as follows:

Ssisi
ðoÞ ¼ Sssðxi;oÞ ¼

X1
r¼1

X1
s¼1

fS
r ðxiÞf

S
s ðxiÞf

F
r ðxjÞf

F
s ðxjÞH

�
r ðoÞHsðoÞSf jf j

ðoÞ (114)

From Eq. (60), the rms value of si(t) ¼ s(xi, t) can then be obtained:

s2i;rms ¼ s2i ¼

Z 1
�1

Ssisi
ðoÞdo

¼
X1
r¼1

X1
s¼1

fS
r ðxiÞf

S
s ðxiÞf

F
r ðxjÞf

F
s ðxjÞ

Z 1
�1

H�r ðoÞHsðoÞSf jf j
ðoÞdo (115)

and

s2si
¼ s2i � ðsiÞ

2

¼ ðsi;rmsÞ
2
� ðsiÞ

2 (116)

For the assumption of white noise excitation Ssisi
ðoÞ ¼ S0 with zero mean f j ¼ E½f jðtÞ� ¼ 0 and beam with

light damping and well-separated modes, Eq. (115) can be simplified as follows according to Eq. (64):

s2si
¼ s2i;rms �

X1
r¼1

½fS
r ðxiÞf

F
r ðxjÞ�

2 pS0

2zro3
r

(117)

If f ja0, the mean of si(t) ¼ s(xi, t) can be derived from Eq. (69) as follows:

si ¼
X1
r¼1

fS
r ðxiÞf

F
r ðxjÞ

o2
r

f j (118)
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In summary, the statistical quantities of si(t) ¼ s(xi, t), in terms of mean si and standard deviation ssi, can be
determined and thus the Gaussian distribution function as shown in Eq. (70) can be obtained and used to
evaluate the structural response.

This section follows the procedure developed in Section 2 to obtain the solutions for transient, harmonic
and spectrum analyses in terms of both generic force/actuator mode shape function fF

r ðxjÞ and generic
response/sensor mode shape function fS

r ðxiÞ, respectively. As long as the force function is identified in terms of
spatial function G(x) as illustrated in Table 2 and the typical responses of interest are specified as shown in
Table 3, both fF

r ðxjÞ and fS
r ðxiÞ can be determined, respectively, as shown in Tables 2 and 3. The analytical

approach is concise and suitable for various boundary conditions of beams, for which mode shape functions
can be defined to maintain the orthogonal properties as shown in Eqs. (80)–(82), subject to different forms of
forces by quantifying different types of response in beams. Although only two common boundary conditions
of uniform beams are illustrated, the presented formulation can be easily made and adapted for complex
beams as well, if the displacement mode shape fr(x) can maintain the corresponding orthogonal relations
similar to those shown in Eqs. (80)–(82).

4. Case study: two-dimensional plate problem

In addition to the beam vibration problem, this section will further demonstrate the generality and
application of the theoretical formulation in Section 2 to lateral vibration of a two-dimensional rectangular
plate problem. The equation of motion for the uniform, thin plate including damping effects can be derived as
follows [54]:

Dr2r2wðx; y; tÞ þ C
qwðx; y; tÞ

qt
þ rt

q2wðx; y; tÞ

qt2
¼ f ðx; y; tÞ (119)

where

D ¼
Eh3

12ð1� n2Þ
(120)

r2 ¼
q2

qx2
þ

q2

qy2
(121)

D is the bending or flexural rigidity of the plate, h the plate thickness and E and n plate’s Young’s modulus
and Poisson’s ratio. In comparison to Eq. (1), the following variables can be identified:

L ¼ Dr2r2

C ¼ C

M ¼ rh

P ¼ x; y (122)

Some common boundary conditions at each of four edges of the rectangular plate can be any two of the
following, including deflection, slope, bending moment and shear force [54]:

wðx; y; tÞ ¼ 0 (123)

yx ¼
qw

qy
¼ 0; yy ¼

qw

qx
¼ 0 (124)

mx ¼ D
q2w
qx2
þ n

q2w

qy2

� �
¼ 0; my ¼ D

q2w

qy2
þ n

q2w
qx2

� �
¼ 0 (125)

Qx ¼ D
q3w

qx3
þ ð2� nÞ

q2w
qx qy2

� �
¼ 0; Qy ¼ D

q3w
qy3
þ ð2� nÞ

q3w

qx2 qy

� �
¼ 0 (126)



ARTICLE IN PRESS
B.-T. Wang / Journal of Sound and Vibration 319 (2009) 1222–12511242
The plate initial conditions can be specified as follows:

wðx; y; 0Þ ¼ w0ðx; yÞ (127)

_wðx; y; 0Þ ¼ _w0ðx; yÞ (128)

where w0(x, y) and _w0ðx; yÞ are the initial displacement and velocity of the plate, respectively.

4.1. Modal analysis

Through eigenproblem analysis, an infinite set of natural frequencies ors and their corresponding
eigenfunctions wrsðxÞ for various boundary conditions of plates can be obtained [47,49]. wrs(x) can be properly
redefined by invoking Eq. (6) and is unique as follows:

frsðxÞ ¼
wrsðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR Ly

0

R Lx

0
rh½wrsðx; yÞ�

2 dxdy

q (129)

The orthogonal relations of displacement mode shape functions frsðx; yÞ can be written as follows according
to Eqs. (7)–(10): Z Ly

0

Z Lx

0

rhfrsðx; yÞfmnðx; yÞdxdy ¼ drmdsn (130)

Z Ly

0

Z Lx

0

frsðx; yÞ½Dr
2r2fmnðx; yÞ�dxdy ¼ o2

rsdrmdsn (131)

Z Ly

0

Z Lx

0

Cfrsðx; yÞfmnðx; yÞdxdy ¼ 2zrsorsdrmdsn (132)

For a simply supported plate, the natural frequencies and mode shape functions that can satisfy the
orthogonal properties are shown as follows, respectively:

ors ¼ ða2r þ a2s Þ

ffiffiffiffiffiffi
D

rh

s
; ar ¼

rp
Lx

; as ¼
sp
Ly

(133)

frsðx; yÞ ¼ frðxÞfsðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffiffiffiffi
rh

p
Lx

s
sin arx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffiffiffiffi
rh

p
Ly

s
sin asy (134)

where

frðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffiffiffiffi
rh

p
Lx

s
sin arx (135)

fsðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffiffiffiffi
rh

p
Ly

s
sin asy (136)

where Lx and Ly are the length and width of the rectangular plate. The subscripts r and s account for both x-
and y-direction in plate length and width, respectively. The free vibration analysis for complex plates can be
found in many literatures, such as plates with non-uniform thickness [24], mass-loaded [20,21,23], or different
boundary conditions [18,19,22,25]. Again, this work does not intend to solve such a free vibration problem.
The following will show the systematic approach for solving the transient, harmonic and spectrum response
analyses, if the natural modes of vibration for the plates can be determined and reveals their orthogonal
properties similar to Eqs. (130)–(132).
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Table 4

Examples for different types of forces for plate transient dynamic analysis

Type of force Ideal impact point force Step point force Ideal impact point moment Ideal impact PZT for bending [55]

Force function f ðx; y; tÞ ¼ f j ðtÞGðx; yÞ Fjdðt� t0Þdðx� xf j
Þdðy� yf j

Þ Fj uðt� t0Þdðx� xf j
Þdðy� yf j

Þ Mxjdðt� t0Þd
0
ðx� xmj

Þdðy� ymj
Þ MCj

dðt� t0Þ½d
0
ðx� xc1j Þ � d0ðx� xc2j Þ�½d

0
ðy� yc1j Þ � d0 ðy� yc2j Þ�

Temporal function fj(t) Fjdðt� t0Þ Fj uðt� t0Þ Mxjdðt� t0Þ MCj
dðt� t0Þ

Spatial function G(x,y) dðx� xf j
Þdðy� yf j

Þ dðx� xf j
Þdðy� yf j

Þ d0ðx� xmj
Þdðy� ymj

Þ ½d0ðx� xc1j Þ � d0ðx� xc2j Þ�½d
0
ðy� yc1j Þ � d0ðy� yc2jÞ�

Magnitude Fj Fj Fj Mxj
MCj

Location xj,yj
xf j
; yf j

xf j
; yf j

xmj
; ymj

xc1j ; xc2j ; yc1j ; yc2j

Generic force mode shape function

fF
rsðxj ; yj Þ ¼

R Ly

0

R Lx

0 frsðx; yÞGðx; yÞdxdy

frsðxf j
; yf j
Þ frsðxf j

; yf j
Þ f0rðxmj

Þfsðymj
Þ ½f0rðxc2j Þ � f0rðxc1j Þ�½f

0
sðyc2j Þ � f0sðyc1j Þ�
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xc2j yc1j
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xp1i

Lx

Ly

Γ (x,y)

(xj, yj)

(xi, yi)

x
y

Lx

Ly

i-th PVDF
sensor 

i-th point
response/sensor 

j-th point
force/actuator

j-th
PZT actuator j-th point

distributed
force/actuator

Fig. 2. The arrangement and coordinates of actuators and sensors in a rectangular plate: (a) force/actuator and (b) response/sensor.
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4.2. Transient response analysis

Consider the generic force acting on the plate with the temporal and spatial functions as follows:

f ðx; y; tÞ ¼ f jðtÞGðx; yÞ (137)

Some examples of spatial functions for several types of forces are given in Table 4 and depicted in Fig. 2.
From the expansion theorem as shown in Eq. (13), the plate lateral displacement response can be assumed

to be as follows:

wðx; y; tÞ ¼
X1
s¼1

X1
r¼1

frsðx; yÞqrsðtÞ (138)

By following the TMA procedure as shown in Section 2 and with the substitution of Eqs. (137) and (138) into
Eq. (119), Eq. (119) is then multiplied by fmn(x) and integrated over plate length Lx and width Ly as follows:

qrsðtÞ
X1
s¼1

X1
r¼1

Z Ly

0

Z Lx

0

frsðx; yÞ½Dr
2r2fmnðx; yÞ�dxdy

(

þ _qrsðtÞ
X1
s¼1

X1
r¼1

Z Ly

0

Z Lx

0

Cfrsðx; yÞ½fmnðx; yÞ�dxdy
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þ €qrsðtÞ
X1
s¼1

X1
r¼1

Z Ly

0

Z Lx

0

rhfrsðx; yÞfmnðx; yÞdxdy

)

¼ f jðtÞ

Z Ly

0

Z Lx

0

fmnðx; yÞGðx; yÞdxdy (139)

By the substitution of the orthogonal properties of eigenfunctions as shown in Eqs. (130)–(132), the PDE in
the physical domain can be reduced to an infinite set of ODEs in the modal domain as follows:

€qrs þ 2zrsors _qrs þ o2
rsqrs ¼ NrsðtÞ

r ¼ 1; 2; . . .

s ¼ 1; 2; . . .

(
(140)

where

NrsðtÞ ¼ f jðtÞ

Z Ly

0

Z Lx

0

frsðx; yÞGðx; yÞdxdy

¼ f jðtÞf
F
rsðx; yÞ (141)

The modal coordinate initial conditions can be obtained from Eqs. (20) and (21) as follows:

qrs0 ¼ qrsð0Þ ¼

Z Ly

0

Z Lx

0

rhfrsðx; yÞw0ðx; yÞdxdy (142)

Similarly,

_qrs0 ¼ _qrsð0Þ ¼

Z Ly

0

Z Lx

0

rhfrsðx; yÞ _w0ðx; yÞdxdy (143)

Finally, the modal coordinate response qrs(t) in Eq. (140) can be solved and maintains the same expressions
as shown in Eqs. (22)–(26) except for the subscript r replaced by rs. Therefore, the transient displacement
response due to the generic force shown in Eq. (137) can be solved. It should be noted that the formulation is
generic and can be easily adapted for different boundary and force conditions.

By introducing the response operator R on w(x, y, t), we obtain the response variable s(x, y, t) as follows:

sðx; y; tÞ ¼ R½wðx; y; tÞ� ¼
X1
s¼1

X1
r¼1

R½frsðx; yÞ�qrsðtÞ ¼
X1
s¼1

X1
r¼1

fS
rsðxÞqrsðtÞ (144)

where fS
rsðx; yÞ is the generic sensor/response mode shape function. Table 5 shows several examples of sensing/

response operators for typical sensing devices or structural responses of interest of the plate. The advantage of
the formulation can be summarized as follows:
(1)
 The spatial function G(x, y) for the generic force acting on the plate is introduced and results in the generic
force mode shape function fF

rsðxj ; yjÞ that is employed to characterize the modal force Nrs(t) as shown in
Eq. (141) and is suitable for arbitrary force application. Then, modal coordinate response qrs(t) can be
obtained from Eqs. (22)–(26). Table 4 summarizes several examples of typical forces and their
corresponding fF

rsðxj ; yjÞ.

(2)
 The response operator R is also defined to obtain the response variable s(x, y, t) as shown in Eq. (144) that

can be determined from the generic sensor/response mode shape function fS
rsðx; yÞ. Table 5(a) shows some

typical sensors and their fS
rsðxi; yiÞ expressions. Table 5(b) shows typical responses of interest, including the

slope yy (strain ex), bending moment Mx, shear force Qx and the maximum bending stress sx in a plate, and
their fS

rsðxi; yiÞ expressions.
(3)
 Both fF
rsðxj ; yjÞ and fS

rsðxi; yiÞ are functions of displacement mode shape function frs(x, y). It should be
noted that the presented formulation for the plate is valid for arbitrary boundaries when frs(x, y) satisfies
the orthogonal properties as shown in Eqs. (130)–(132). From the viewpoint of numerical programming
for the solution, the formulation is of great convenience to apply, since only the generic force and response
mode shape functions need to be rearranged accordingly.
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Table 5

Examples of response operators for typical sensing devices or structural responses of interest of plate structures
(a) Typical sensing devices

Sensor Displacement sensor Accelerometer Rotational sensor (slope yy) PVDF sensor [52,55]

Location xj,yj
xdi
; ydi

xai
; yai

xyi
; yyi

xp1i ; xp2i ; yp1i ; yp2i

Measured quantity

sðxi ; yiÞ ¼ R½wðxi ; yi ; tÞ�

wðxdi
; ydi
Þ q2wðx; y; tÞ

qt2

����x ¼ xai

y ¼ yai

qwðx; y; tÞ

qx

���� x ¼ xyi

y ¼ yyi

Kp

qwðx; y; tÞ

qx

����
x¼xp1i

�
qwðx; y; tÞ

qx

����
x¼xp2i

" #

qwðx; y; tÞ

qy

����
y¼yp1i

�
qwðx; y; tÞ

qy

����
y¼yp2i

" #

Sensing operator R 1j x ¼ xdi

y ¼ ydi

q2

qt2

���� x ¼ xai

y ¼ yai

q
qx

���� x ¼ xyi

y ¼ yyi

Kp

q
qx

����
x¼xp1i

�
q
qx

����
x¼xp2i

" #
q
qy

����
y¼yp1i

�
q
qy

����
y¼yp2i

" #

Generic sensor function

fS
rsðxi ; yiÞ ¼ R½frðxi ; yiÞ�

frsðxdi
; ydi
Þ frsðxai

; yai
Þ f0rðxyi

Þfsðyyi
Þ Kp½f

0
rðxp1iÞ � f0rðxp2iÞ�½f

0
sðyp1iÞ � f0sðyp2iÞ�

(b) Typical structural responses of interest

Response Slope yy (Strain ex) Moment Shear force Max. bending stress

Location xj,yj xj,yj xj,yj xj,yj xj,yj

Measured quantity

sðxiÞ ¼ R½wðxi ; tÞ�
yyðxi ; yi ; tÞ ¼

qwðx; y; tÞ

qx

����x ¼ xi

y ¼ yi

Mxðxi ; yi ; tÞ ¼ D
q2w

qx2
þ n

q2w

qy2

� �����x ¼ xi

y ¼ yi

Qxðxi ; yi ; tÞ

¼ D
q3w

qx3
þ ð2� nÞ

q2w

qx qy2

� ����� x ¼ xi

y ¼ yi

sxðxi ; yi ; tÞ ¼
EZ

ð1� n2Þ
q2w

qx2
þ n

q2w

qy2

� �����x ¼ xi

y ¼ yi

Response operator R q
qx

���� x ¼ xi

y ¼ yi

D
q2

qx2
þ n

q2

qy2

� ����� x ¼ xi

y ¼ yi

D
q3

qx3
þ ð2� nÞ

q2

qx qy2

� �����x ¼ xi

y ¼ yi

EZ

ð1� n2Þ
q2

qx2
þ n

q2

qy2

� �����x ¼ xi

y ¼ yi

Generic response mode

shape function

fS
rsðxi ; yiÞ ¼ R½frsðxi ; yiÞ�

f0rðxiÞfsðyiÞ D½f00r ðxiÞfsðyiÞ þ nfrðxiÞf
00
s ðyiÞ� D½f000r ðxiÞfsðyiÞ þ ð2� nÞf0rðxiÞf

00
s ðyiÞ� EZ

ð1� n2Þ
½f00r ðxiÞfsðyiÞ þ nf0rðxiÞf

00
s ðyiÞ�

Note: Z ¼ h/2 ¼ max. distance from the neutral surface of the plate.
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4.3. Harmonic response analysis

Consider a generic harmonic force with amplitude Aj and excitation frequency o applied at some location
defined by the spatial function G(x). The harmonic force function can be expressed as follows:

f ðx; y; tÞ ¼ f jðtÞGðx; yÞ ¼ Aje
iotGðx; yÞ (145)

Table 4 shows several types of forces for their spatial functions.
From the expansion theorem as shown in Eq. (138), the plate lateral displacement response can also be

assumed to be harmonic as follows:

wðx; y; tÞ ¼
X1
s¼1

X1
r¼1

frsðx; yÞqrsðtÞ

¼
X1
s¼1

X1
r¼1

frsðx; yÞQrðoÞe
iot

¼W ðx; y;oÞeiot (146)

With the employment of the sensing/response operator R, the response variable s(x, y, t) can be expressed as
follows:

sðx; y; tÞ ¼
X1
s¼1

X1
r¼1

R½frsðx; yÞ�qrsðtÞ

¼
X1
s¼1

X1
r¼1

fS
rsðx; yÞQrsðoÞe

iot

¼ Sðx; y;oÞeiot (147)

where

Sðx; y;oÞ ¼
X1
s¼1

X1
r¼1

fS
rsðx; yÞQrsðoÞ (148)

By following the TMA procedure as shown in the previous section, one can obtain Qrs(o) directly from Eq.
(35). Or, with the substitution of Eqs. (145) and (147) into the plate equation in Eq. (119), Eq. (119) is then
multiplied by frs(x, y) and integrated over plate length Lx and width Ly, and the amplitude of modal
coordinate Qrs(o) can be obtained as follows:

QrsðoÞ ¼
Aj

R Ly

0

R Lx

0 frsðx; yÞGðx; yÞdxdy

ðo2
rs � o2Þ þ ið2zrsorsoÞ

¼
Ajf

F
rsðxj ; yjÞ

ðo2
rs � o2Þ þ ið2zrsorsoÞ

(149)

The plate response variable s(x, y, t) at x ¼ xi, y ¼ yi can be obtained from Eq. (147) as follows:

si ¼ sðxi; yi; tÞ ¼
X1
s¼1

X1
r¼1

fS
rsðxi; yiÞQrðoÞe

iot ¼ Sðxi; yi;oÞe
iot ¼ Si e

iot (150)

where

Si ¼ Sðxi; yi;oÞ ¼
X1
s¼1

X1
r¼1

fS
rsðxi; yiÞQrðoÞ (151)

Finally, from Eq. (40) the FRF between the generic force amplitude and the response variable amplitude
can be obtained as follows:

Hij ¼
Si

Aj

¼
X1
s¼1

X1
r¼1

fS
rsðxi; yiÞf

F
rsðxj ; yjÞ

ðo2
rs � o2Þ þ ið2zrsorsoÞ

(152)
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Tables 4 and 5 show various types of actuator/force and sensor/response for both fF
rsðxj ; yjÞ and fS

rsðxi; yiÞ.
In particular, as shown in Table 5(b), the resultant bending moment Mx(xi, yi, t), shear force Qx(xi, yi, t) and of
maximum bending stress sx(xi, yi, t) at location (xj, yj) can be conveniently obtained [54]. Wu et al. [56] have
revealed a similar concept for modal resultants. The FRF for any combination of actuator/force and sensor/
response can be derived from Eq. (152). Chen and Wang [52] presented the same form of equation as shown in
Eq. (152) for the use of a PZT actuator and a PVDF sensor in experimental modal testing. Koh and White [32]
also presented a similar general form of driving point mobility expressions as the above approach by
considering a structural damping effect and suitable for several boundary conditions. In the present work, the
advantage of the formulation is that it not only shows the physical meaning for both fF

rsðxj ; yjÞ and fS
rsðxi; yiÞ

but is also proof a great convenience for the numerical programming and solution for different complex
combinations of actuation, sensing and boundary conditions of plates.
4.4. Spectrum response analysis

The general approach for the plate subject to generic random force excitation is considered in this section.
The generic force function can be expressed as follows:

f ðx; y; tÞ ¼ f jðtÞGðx; yÞ (153)

Then, the Fourier spectrum of the jth point random force f(x, y, t) can be obtained:

F ðx; y;oÞ ¼ I½f ðx; y; tÞ� ¼ I½f jðtÞ�Gðx; yÞ ¼ FjðoÞGðx; yÞ (154)

where Fj(o) is the Fourier spectrum of fj(t). From Eq. (44), the PSD function for f(x, y, t) can be found as
follows:

Sff ðxj ; yj ;oÞ ¼ ½Gðx; yÞ�
2Sf jf j

ðoÞ (155)

From transient response analysis as shown in Eq. (144), the plate response variable s(x, y, t) can be written
as follows:

sðx; y; tÞ ¼
X1
s¼1

X1
r¼1

fS
rsðx; yÞqrsðtÞ (156)

The Fourier spectrum and PSD function of s(x, y, t) can also be obtained from Eqs. (48) and (49),
respectively, as follows:

Sðx; y;oÞ ¼ I½sðx; y; tÞ� ¼
X1
s¼1

X1
r¼1

fS
rsðx; yÞQrsðoÞ (157)

Sssðx; y;oÞ ¼
X1
n¼1

X1
m¼1

X1
s¼1

X1
r¼1

fS
rsðx; yÞf

S
mnðx; yÞSqrsqmn

ðoÞ (158)

where Sqrsqmn
ðoÞ is the PSD function of qrs(t) and can be determined from Eq. (57) as follows:

Sqrsqmn
ðoÞ ¼ H�rsðoÞHmnðoÞSNrsNmn

ðoÞ (159)

where

HrsðoÞ ¼
QrsðoÞ
NrsðoÞ

¼
1

ðo2
rs � o2Þ þ ið2zrsorsoÞ

(160)

and SNrsNmn
ðoÞ is the PSD function of Nrs(t) and can be determined from Eq. (56)

SNrsNmn
ðoÞ ¼ fF

rsðxj ; yjÞf
F
mnðxj ; yjÞSf jf j

ðoÞ (161)

where fF
rsðxj ; yjÞ is the generic force mode shape function. Table 4 shows some typical force expressions.
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Finally, from Eq. (59) and with the imposition of the above equations, the PSD of system response variable
s(x, y, t) can be finally expressed:

Sssðx; y;oÞ ¼
X1
n¼1

X1
m¼1

X1
s¼1

X1
r¼1

fS
rsðx; yÞf

S
mnðx; yÞf

F
rsðxj ; yjÞf

F
mnðxj ; yjÞH

�
rsðoÞHmnðoÞSf j f j

ðoÞ (162)

The PSD function of si ¼ s(xi, yi, t) at (xi, yi) location can be obtained:

Ssisi
ðoÞ ¼ Sssðxi; yi;oÞ

¼
X1
n¼1

X1
m¼1

X1
s¼1

X1
r¼1

fS
rsðxi; yiÞf

S
mnðxi; yiÞf

F
rsðxj ; yjÞf

F
mnðxj ; yjÞH

�
rsðoÞHmnðoÞSf jf j

ðoÞ (163)

From Eq. (60), the rms value of si ¼ s(xi, yi, t) can then be obtained:

s2i;rms ¼ s2i ¼

Z 1
�1

Ssisi
ðoÞdo

¼
X1
n¼1

X1
m¼1

X1
s¼1

X1
r¼1

fS
rsðxi; yiÞf

S
mnðxi; yiÞf

F
rsðxj ; yjÞf

F
mnðxj ; yjÞ

�

Z 1
�1

H�rsðoÞHmnðoÞSf jf j
ðoÞdo (164)

and

s2si
¼ s2i � ðsiÞ

2

¼ ðsi;rmsÞ
2
� ðsiÞ

2 (165)

For the assumption of white noise excitation Sf jf j
ðoÞ ¼ S0 with zero mean f j ¼ E½f jðtÞ� ¼ 0 and the plate

with light damping and well-separated modes, Eq. (164) can be simplified as follows according to Eq. (64):

s2si
¼ s2i;rms �

X1
s¼1

X1
r¼1

½fS
rsðxi; yiÞf

F
rsðxj ; yjÞ�

2 pS0

2zrso3
rs

(166)

If f ja0, the mean of si(t) ¼ s(xi, yi, t) can be derived from Eq. (69) as follows:

si ¼
X1
s¼1

X1
r¼1

fS
rsðxi; yiÞf

F
rsðxj ; yjÞ

o2
rs

f j (167)

In summary, the statistical quantities of si(t) ¼ s(xi, yi, t), in terms of mean si and standard deviation ssi, can
be determined and thus the Gaussian distribution function as shown in Eq. (70) can be obtained and used to
evaluate the structural response.

In summary, this section presents the general formulation for analytical solutions of plates for four types of
vibration analyses. When the force function is identified in terms of spatial function G(x, y) as shown by some
examples in Table 4 and the typical responses of interest are specified as shown in Table 5, both fF

r ðxjÞ and
fS

r ðxiÞ can be determined, respectively, as shown in Tables 4 and 5. The solutions in terms of generic force/
actuator and response/sensor mode shape functions can be fully obtained. The above formulation is suitable
for various boundary conditions of plates whose mode shape functions can be defined to maintain the
orthogonal properties as shown in Eqs. (130)–(132). Although only the simply supported uniform plate is
illustrated, the systematic solutions for transient, harmonic and spectrum analyses can be easily adapted for
complex plates as well, such as with non-uniform thickness and different boundary conditions.

5. Conclusions

This work generalizes the theoretical solution of four types of vibration analyses for continuous structure
systems with damping consideration subject to various forms of actuation forces and sensing responses. Both
one-dimensional beam and two-dimensional rectangular plate problems are presented to illustrate the
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mathematical derivation through the general formulation. The generic formulation can provide a systematic
approach to deal with the mathematical derivation of system responses of interest for complex combinations
of different types of structures, boundary conditions and forcing functions. The formulation is straightforward
and can be easily adapted to different structures with various boundaries and force conditions. The solutions
for transient dynamic analysis, harmonic response analysis and spectrum analysis, considering various forms
of actuation forces and sensing response, can be expressed in a concise format by generic force/actuator and
response/sensor mode shape functions, respectively. The physical quantities can be well interpreted and are
useful for engineering design analysis as well as for other applications such as active control, damage detection
and force prediction. Although only beam and plate structures are shown, the theoretical formulation in this
work is applicable to other continuous structure systems, such as strings, bars, shafts and membranes, as well.
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